9p^2+6p-17=0

Simple and best practice solution for 9p^2+6p-17=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9p^2+6p-17=0 equation:


Simplifying
9p2 + 6p + -17 = 0

Reorder the terms:
-17 + 6p + 9p2 = 0

Solving
-17 + 6p + 9p2 = 0

Solving for variable 'p'.

Begin completing the square.  Divide all terms by
9 the coefficient of the squared term: 

Divide each side by '9'.
-1.888888889 + 0.6666666667p + p2 = 0

Move the constant term to the right:

Add '1.888888889' to each side of the equation.
-1.888888889 + 0.6666666667p + 1.888888889 + p2 = 0 + 1.888888889

Reorder the terms:
-1.888888889 + 1.888888889 + 0.6666666667p + p2 = 0 + 1.888888889

Combine like terms: -1.888888889 + 1.888888889 = 0.000000000
0.000000000 + 0.6666666667p + p2 = 0 + 1.888888889
0.6666666667p + p2 = 0 + 1.888888889

Combine like terms: 0 + 1.888888889 = 1.888888889
0.6666666667p + p2 = 1.888888889

The p term is 0.6666666667p.  Take half its coefficient (0.3333333334).
Square it (0.1111111112) and add it to both sides.

Add '0.1111111112' to each side of the equation.
0.6666666667p + 0.1111111112 + p2 = 1.888888889 + 0.1111111112

Reorder the terms:
0.1111111112 + 0.6666666667p + p2 = 1.888888889 + 0.1111111112

Combine like terms: 1.888888889 + 0.1111111112 = 2.0000000002
0.1111111112 + 0.6666666667p + p2 = 2.0000000002

Factor a perfect square on the left side:
(p + 0.3333333334)(p + 0.3333333334) = 2.0000000002

Calculate the square root of the right side: 1.414213562

Break this problem into two subproblems by setting 
(p + 0.3333333334) equal to 1.414213562 and -1.414213562.

Subproblem 1

p + 0.3333333334 = 1.414213562 Simplifying p + 0.3333333334 = 1.414213562 Reorder the terms: 0.3333333334 + p = 1.414213562 Solving 0.3333333334 + p = 1.414213562 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-0.3333333334' to each side of the equation. 0.3333333334 + -0.3333333334 + p = 1.414213562 + -0.3333333334 Combine like terms: 0.3333333334 + -0.3333333334 = 0.0000000000 0.0000000000 + p = 1.414213562 + -0.3333333334 p = 1.414213562 + -0.3333333334 Combine like terms: 1.414213562 + -0.3333333334 = 1.0808802286 p = 1.0808802286 Simplifying p = 1.0808802286

Subproblem 2

p + 0.3333333334 = -1.414213562 Simplifying p + 0.3333333334 = -1.414213562 Reorder the terms: 0.3333333334 + p = -1.414213562 Solving 0.3333333334 + p = -1.414213562 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-0.3333333334' to each side of the equation. 0.3333333334 + -0.3333333334 + p = -1.414213562 + -0.3333333334 Combine like terms: 0.3333333334 + -0.3333333334 = 0.0000000000 0.0000000000 + p = -1.414213562 + -0.3333333334 p = -1.414213562 + -0.3333333334 Combine like terms: -1.414213562 + -0.3333333334 = -1.7475468954 p = -1.7475468954 Simplifying p = -1.7475468954

Solution

The solution to the problem is based on the solutions from the subproblems. p = {1.0808802286, -1.7475468954}

See similar equations:

| 11=p-(-25) | | 8t-3=12t | | 32.1y+3.1+2.4y-8.2=34.5y-5.1 | | 1/4D-45=-11 | | 0.5w+7=2w-2 | | -8(x-2)+9=25 | | X=-1x-7 | | 4y+2-3y=3 | | (6v^2-4v-2)+(3v^2-5v+1)= | | (1/4)x=16 | | y^4+12y^3-64y^2=0 | | 3y+3y=5y+3 | | 4.45/(-0.2)=x | | (3d+3)+(2a+7)= | | 19+5=-3(7x-8) | | cosx=1+sinx | | S=4m+4wform | | f(x)=ln(13-9x^2+2x^4) | | 2/8x-6=-24 | | -16x+y=166 | | 10+7c=38 | | 2x-68.4=90 | | 4.45/-0.2 | | 8x+4=2+7x-1 | | 180=220+2a | | 4x^2-7x+h=0 | | 9+8c=12 | | 4/9m-8/3=7/6 | | 11+20c=00 | | 180=40+2a | | 11+20c=0 | | (1/x)-x-1/5 |

Equations solver categories